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Abstract
We study the quantum phase diagram of the Heisenberg planar antiferromagnet with a subset of
four-spin ring exchange interactions, using the recently proposed hierarchical mean-field
approach. By identifying relevant degrees of freedom, we are able to use a single variational
ansatz to map the entire phase diagram of the model and uncover the nature of its various
phases. It is shown that there exists a transition between a Néel state and a quantum
paramagnetic phase, characterized by broken translational invariance. The non-magnetic phase
preserves the lattice rotational symmetry, and has a correlated plaquette nature. Our results also
suggest that this phase transition can be properly described within the Landau paradigm.

1. Introduction

Quantum phases of matter and their transitions are of
fundamental concern to modern condensed matter physics [1].
Such interest is motivated not only by potential technical
applications, but also on purely scientific grounds. Research
in this field may lead to a deeper understanding of the
fundamental working principles behind nature’s behavior, and
often original new physical theories emerge. One of them,
recently proposed in [2], predicts the existence of a class
of systems whose critical behavior lies outside the scope of
the Landau theory of phase transitions [3]. Critical points
in these systems are characterized by the deconfinement of
fractionalized excitations, parameterizing the original degrees
of freedom, which occurs right at the transition. It was
observed that this scenario can, in principle, be realized in spin
systems, which exhibit a second-order phase transition point
characterized by the simultaneous breakdown of continuous
(e.g. spin SU(2)) and discrete (e.g. lattice) symmetries, in such
a way that symmetry groups on opposite sides of the transition
are not group–subgroup related. Such critical points cannot be
described in the framework of Landau’s theory.

According to [2], there should exist a substantial number
of spin systems, which exhibit deconfined critical points. For
instance, frustrated two-dimensional (2D) antiferromagnets
(AFs), like the J1–J2 model, are believed to fall into this
category. However, there seems to be no experimental or
theoretical proof of this claim. Another class of models
believed to display such a behavior includes non-frustrated

AFs with multi-spin exchange interactions. One such model
was studied by Sandvik [4] and other authors [5, 6] and,
although seemingly artificial, it provides a playground for
testing new theories. Their quantum Monte Carlo (QMC)
simulations claimed numerical evidence for the deconfined
quantum criticality scenario.

The model studied in [4] is a Heisenberg AF with a subset
of four-spin ring exchange interactions, defined on a square
lattice (named the J–Q model)

H = J
∑

〈ij〉
SiSj − Q

∑

〈ijkl〉

(
SiSj − 1

4

)(
SkSl − 1

4

)
,

where Q � 0, i, j, . . . denote sites in a 2D square lattice
and Si are spin-1/2 operators. The first summation extends
over bonds (nearest neighbor sites). The second term contains
two sums over plaquettes (sites of the dual lattice): first, (ij)
and (kl) denote parallel horizontal links of the plaquette, and
then (ik) and (jl) correspond to parallel vertical bonds. It
was concluded [4] that there exists a critical point at Qc/J ∼
25 separating the antiferromagnetic phase from a valence-
bond solid (VBS) state, whose nature is, strictly speaking,
unclear [4] but the calculations suggested a columnar (dimer)
order in this paramagnetic region.

In the present paper we study the phase diagram of the
J–Q model, using a recently proposed hierarchical mean-
field (HMF) technique [7, 8]. The main idea of the method
revolves around the concept of a relevant degree of freedom
(a ‘quark’)—spin cluster in this particular case—which can
be used to build up the system. The initial Hamiltonian is
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then rewritten in terms of these coarse-grained variables and
a mean-field approximation is applied to determine properties
of the system. Thus, the (generally) exponentially hard
problem of determining the ground state of the system is
reduced to a polynomially complex one. At the same time,
essential quantum correlations, which drive the physics of
the problem, are captured by the local representation. In
other words, provided the quark is chosen properly, even a
simple single mean-field approximation, performed on these
degrees of freedom, will yield the correct phase diagram.
Moreover, our HMF ansatz provides an educated nodal surface
that can, in principle, be used in conjunction with fixed-node
(or constrained path [9]) QMC approaches to further improve
correlations, and thus energy estimates, in those cases when
there is a sign (phase) problem.

It is important to emphasize the simplicity of our method.
In this work we concentrate on symmetries of the various
phases, exhibited by the J–Q model. By using a more
sophisticated variational ansatz (e.g. a Jastrow-type correlated
wavefunction), one can also improve numerical values of
the observable quantities and phase transition points, but the
physical picture will remain intact. Nevertheless, the HMF
method was quite accurate to yield the quantitatively correct
phase diagram [7] of the J1–J2 model, whose behavior is
driven by the interplay of two gapless phases: the Néel and
columnar AF states. In the J–Q model the large-Q phase is
gapped. Due to its real-space nature, the HMF method should
be appropriate for this model. Indeed, our recent studies [10] of
another gapped system—the Heisenberg model on the Shastry–
Sutherland lattice—support this assumption.

Our findings are summarized in figure 1. There indeed
exists a non-magnetic phase, which we found to be of a
correlated plaquette type, and not of a dimer character,
separated from the Néel state by a second-order phase
transition. However, the numerical value of the critical point,
Qc/J ∼ 2, which we obtained, is quite different from that
of [4]. Our results are consistent with data obtained from
exact diagonalization of finite spin clusters which, given the
fact that the system is gapped in the paramagnetic phase for
Q � Qc, should be reliable in this region. Although we found
the phase transition to be of the Landau second-order type, due
to the real-space nature of the method (which explicitly breaks
the lattice translational invariance), we cannot rigorously rule
out the possibility that this phase transition becomes weakly
first order as one scales the degree of freedom towards the
thermodynamic limit.

In the next section we set up the formalism. The results are
presented in section 3, followed by a discussion in section 4.

2. Coarse graining and HMF approximation

For our purposes it is convenient to separate the two- and four-
spin terms in the J–Q Hamiltonian:

H = −2N Q

16
+

(
J + Q

2

) ∑

〈ij〉
SiSj

− Q
∑

〈ijkl〉
(SiSj)(SkSl). (1)

A satisfactory coarse graining procedure should partition
the lattice into spin clusters (quarks), containing Nq sites,
that explicitly preserve symmetries of the Hamiltonian. In
particular, the J–Q Hamiltonian is explicitly spin-SU(2)
invariant. Moreover, it is invariant under transformations from
the lattice rotational group C4. Therefore, we will consider
only symmetry preserving degrees of freedom: (i) plaquettes
(2 × 2 spin clusters) and (ii) 4 × 4 spin clusters. Each cluster
state will be associated with a hard-core bosonic operator γ .
These operators are Schwinger bosons of SU(2Nq ) and must
obey the local constraint:

∑
a γ

†
iaγia = 1. They define the

hierarchical language [8] for our problem.
From the form of equation (1) it is clear [7] that

the (equivalent and exact) bosonic Hamiltonian will contain
not only two-body scattering processes, but also four-boson
interactions. Therefore, we can write down symbolically

H =
∑

i

(H�)a′aγ
†
ia′γia +

∑

〈i j〉

(
H 2

int

)a′
1a′

2

a1a2
γ

†
ia′

1
γ

†
ja′

2
γia1γ ja2

+
∑

〈i1i2i3i4〉h

(H 4h
int )

a′
1a′

2;a′
3a′

4
a1a2;a3a4

4∏

μ=1

γ
†
iμa′

μ
γiμaμ

+
∑

〈i1i2i3i4〉v
(H 4v

int )
a′

1a′
3;a′

2a′
4

a1a3;a2a4

4∏

μ=1

γ
†
iμa′

μ
γiμaμ , (2)

where a, . . . label states in the Hilbert space of a quark, i, j, . . .
denote sites in the coarse-grained lattice, and summations are
assumed over all repeated indices. The term with H 2

int encodes
two-body interactions, while the last two lines describe the
correlated four-boson scattering. The superscript h indicates
that i1i2 and i3i4 are horizontal links of a plaquette, and
similarly v denotes the case when i1i3 and i2i4 are vertical links
of the same plaquette.

We will investigate the phase diagram of the J–Q model
using the HMF approximation whose variational state assumes
that the hard-core bosons form an insulating state. Further, we
introduce a new set of bosonic operators, related to the old ones
by a real site-independent canonical transformation:

γia = Rn
a�in; Rn

a Rn
b = δab, Rn

a Rm
a = δnm

and write the variational ground state in the form

|ψ0〉 =
∏

i

�
†
i0|0〉, (3)

where n = 0 denotes the lowest energy single-particle mode
(we shall also denote: R0

a ≡ Ra), and |0〉 represents the
vacuum. It is important to emphasize that although the
coarse graining procedure preserves the symmetries of the
Hamiltonian, some of them can be spontaneously broken at the
mean-field level as a result of self-consistency. In particular,
the columnar dimer state is contained in the wavefunction (3)
although, as we will see below, it never appears as a stable
solution.

We have explicitly separated the four-boson interaction
in the Hamiltonian (2) into horizontal and vertical link
contributions. This distinction is important because these two
terms must be properly symmetrized to fulfil bosonic statistics.
In particular, the term H 4h

int has to be symmetrized only with

2
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respect to indices in the same group, and groups as a whole
(groups are separated by semicolons), i.e. one needs to take
into account only the following permutations: (1 ↔ 2), (3 ↔
4) and simultaneously (1 ↔ 3, 2 ↔ 4). Analogously, in the
term H 4v

int only the permutations (1 ↔ 3), (2 ↔ 4) and (1 ↔ 2,
3 ↔ 4) should be accounted for.

The problem then reduces to minimization of the energy
functional:

Nq E0[R]
N

= (H�)a′a Ra′ Ra + (H 2
int)

a′
1a′

2
a1a2

2∏

ν=1

Ra′
ν
Raν

+ (
H 4h

int + H 4v
int

)a′
1a′

2;a′
3a′

4

a1a2;a3a4

4∏

ν=1

Ra′
ν
Raν (4)

under the constraint Ra Ra = 1, which leads to the self-
consistent eigenvalue equation:

(HHF)ab Rb = μRa (5a)

with the chemical potential μ being the lowest eigenvalue of
the Hartree–Fock Hamiltonian:

(HHF)ab = (H�)ab + 2(H 2
int)

a′
1b

a1a Ra′
1
Ra1

+ 4
(
H 4h

int + H 4v
int

)a′
1a′

2a′
3b

a1a2a3a

3∏

μ=1

Ra′
μ

Raμ . (5b)

Once the amplitude Ra is determined, the ground state
energy (GSE) can be computed using equation (4).

Although we have formulated the HMF method for spin-
1/2 systems, it can be straightforwardly extended to higher
spins as well.

Besides the GSE we will also be interested in computing
the staggered magnetization Mz , and the two-component VBS
‘order parameter’ [11]:

Re� = 1

N

∑

x

(−1)xSx+ex Sx;

Im� = 1

N

∑

x

(−1)ySx+ey Sx,

which allows us to characterize lattice point group symmetries
of a state.

In the rest of this section we will sketch the HMF
calculation of E0, Mz and� for the case of plaquettes, and only
present final expressions for the 4 × 4 clusters. The interested
reader is referred to [7], where the technique is analyzed and
developed in greater detail. For simplicity we shall put J ≡ 1.

(i) The plaquette degree of freedom

We start by considering the simplest way to cover the lattice—
with plaquettes, as shown in figure 2. At the same time we
introduce notations and concepts, which will be used in the
following subsection.

The Hamiltonian for an isolated plaquette has the form

H� =
(

1 + Q

2

)
(S1 + S4)(S2 + S3)

− Q[(S1S2)(S3S4)+ (S1S3)(S2S4)]. (6)

Figure 1. Schematic phase diagram of the J –Q model, obtained in
the present paper. The translationally invariant AF phase with broken
SU(2) symmetry and the singlet paramagnetic state are separated by
a quantum phase transition at Q = Qc. Results of our calculations
indicate that this transition is continuous, but we cannot rigorously
discard the possibility that it becomes weakly first order in the
thermodynamic limit. The non-magnetic phase breaks the lattice
translational symmetry and is a plaquette paramagnet.

Figure 2. The plaquette lattice. Thick lines denote interactions
J + Q/2. The circles indicate four-spin terms of strength Q in the
Hamiltonian (1). Small-sized numbers label spins within a plaquette,
while the larger ones label plaquettes.

The interaction of this plaquette with the rest of the system
can be conveniently partitioned according to (2) as

Hint = H 2
int + H 4h

int + H 4v
int ,

where appropriately symmetrized individual terms are given by

H 2
int = 1 + Q/2

2
[(S11 + S14)(S22 + S23)

+ (S12 + S13)(S21 + S24)]
3
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− Q

2
[(S11S12)(S23S24)+ (S11S23)(S12S24)

+ (S12S14)(S21S23)+ (S12S21)(S14S23)

+ (S13S14)(S21S22)+ (S13S21)(S14S22)

+ (S11S22)(S13S24)+ (S11S13)(S22S24)]; (7a)

H 4h
int = − Q

8
[(S14S23 + S24S13)(S32S41 + S31S42)

+ (S34S43 + S44S33)(S12S21 + S11S22)]; (7b)

H 4v
int = − Q

8
[(S14S32 + S12S34)(S23S41 + S21S43)

+ (S24S42 + S22S44)(S13S31 + S11S33)]. (7c)

It is convenient to work in the basis which diagonalizes the
Q-independent part of H�, equation (6). Such is, for instance,
the basis of eigenstates of the total angular momentum of the
plaquette:

|a〉 = |l1l2 L M〉,
l1 = S1 + S4; l2 = S2 + S3; L = l1 + l2.

(8)

The matrix elements, which appear in equation (4)

(H 2
int)

a′
1a′

2
a1a2 ≡ 〈a′

1a′
2|H 2

int|a1a2〉;

(H 4h,v
int )

a′
1a′

2;a′
3a′

4
a1a2;a3a4

≡ 〈a′
1a′

2; a′
3a′

4|H 4h,v
int |a1a2; a3a4〉

can now be computed using the angular momentum addition
theorems.

The staggered magnetization (along the z-axis) within a
plaquette is given by

Mz = 1
4 (S

z
1 + Sz

4 − Sz
2 − Sz

3)ab Ra Rb, (9)

while the function � can be written in the plaquette
representation as

Re� = 1

N

∑

i

[Si1Si2 + Si3Si4]

− 1

N

∑

i

[Si2Si+x̂ ,1 + Si4Si+x̂,3];

Im� = 1

N

∑

i

[Si1Si3 + Si2Si4]

− 1

N

∑

i

[Si3Si+ŷ,1 + Si4Si+ŷ,2].

(10)

In these equations the indices i and x̂ denote sites and basis
vectors of the plaquette lattice.

(ii) 4 × 4 spin clusters

The coarse-grained lattice obtained by choosing the 4 × 4
cluster as a degree of freedom is shown in figure 3. Each
spin operator carries three indices: label of a cluster, label
of a plaquette within this cluster, and the position within this
plaquette. Writing down the cluster self-energy and the inter-
cluster interactions is a straightforward, but tedious task, which
can be accomplished along the lines presented in the previous
subsection. Therefore, here we give only final expressions for
Mz and � .

Figure 3. Connectivity of the lattice formed by 4 × 4 spin clusters.
Small circles indicate spins. Bold numbers label the 4 × 4 clusters,
while thin ones denote plaquettes. Other notations, are the same as in
figure 2.

The staggered magnetization of a cluster is given by an
equation analogous to (9):

Mz =
4∑

i=1

(Sz
i1 + Sz

i4 − Sz
i2 − Sz

i3)A′ A RA′ RA, (11)

where the summation extends over plaquettes within a cluster,
and we used capital indices A to label states of the cluster. The
function � can be written as

Re� = 1

N

∑

i

(Si11Si12 + Si13Si14 + Si31Si32

+ Si33Si34 + Si21Si22 + Si23Si24

+ Si41Si42 + Si43Si44 − Si12Si21

− Si14Si23 − Si32Si41 − Si34Si43)

− 1

N

∑

i

[Si22Si+x̂,11 + Si24Si+x̂,13

+ Si42Si+x̂ ,31 + Si44Si+x̂,33];

Im� = 1

N

∑

i

(Si11Si13 + Si12Si14 + Si21Si23

+ Si22Si24 + Si31Si33 + Si32Si34

+ Si41Si43 + Si42Si44 − Si13Si31

− Si14Si32 − Si23Si41 − Si24Si42)

− 1

N

∑

i

[Si33Si+ŷ,11 + Si34Si+ŷ,12

+ Si43Si+ŷ,21 + Si44Si+ŷ,22].

(12)

4
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Figure 4. Ground state energy as a function of Q/J for plaquettes
(case (i)) and 4 × 4 spin clusters (case (ii)).

3. Results

We can now proceed with the solution of the mean-field
equation (5), supplemented by equations (6), (7) for case (i)
and analogous expressions in case (ii).

The physical quantities that we want to compute in the first
place are the GSE and the staggered magnetization. These are
given by equation (4) and equation (9) for case (i), and (11)
for case (ii). In figure 4 we present GSEs for both degrees of
freedom. All energies monotonically decrease with increasing
Q/J as a consequence of the negative sign in front of the
last term in equation (1). At some critical value of Q = Qc

the system undergoes a phase transition from the Néel state
at small Q to a spin-disordered state at Q > Qc. This
transition can be seen either from the second derivative of the
GSE, d2 E0/N dQ2, shown in figure 5, or from the staggered
magnetization as a function of Q/J , presented in figure 6.
Using these plots one obtains the numerical values Qc/J =
1.61 for plaquettes and Qc/J = 2.00 for 4 × 4 clusters.
Although the jump g = J d2 E0/N dQ2|Qc+0

Qc−0 is numerically
small, it remains finite: g → 0.016, if extrapolated to the
thermodynamic limit, based on these two points (see the inset
to figure 5). The finite-size scaling of the critical point itself,
presented in the inset to figure 6, shows that limNq→∞ Qc/J =
2.13. In order to demonstrate that our results are reliable, we
compute limiting values of the GSE and the magnetization at
Q = 0: limNq→∞ E0/N J = −0.64 and limNq→∞ Mz =
0.39. These numbers should be compared to the accepted
QMC results [12]: E0/N J = −0.67 and Mz = 0.31.
We note, finally, that due to few data points, the finite-size
scalings presented here are qualitative, and are intended to
provide only an estimate for the extrapolated quantities in the
thermodynamic limit.

Let us now discuss the symmetries of the various phases.
The antiferromagnetic state, which occurs for Q < Qc, is
known to preserve the lattice rotational symmetry C4, and
spontaneously breaks the spin SU(2) symmetry. The nature
of the paramagnetic phase, stabilized for Q � Qc, can
be unveiled by computing expectation values of the function

Figure 5. Second-order derivative d2 E0/N dQ2 (main panel) as a
function of Q/J for cases (i) and (ii). The discontinuity at
Q/J ∼ 1.61 (2 × 2) and Q/J ∼ 2.0 (4 × 4) indicates a
second-order phase transition point. The inset shows the
extrapolation of the jump g = J d2 E0/N dQ2|Qc+0

Qc−0 to Nq → ∞.

Figure 6. Staggered magnetization (main panel), equations (9)
and (11), as a function of Q/J for cases (i) and (ii). The values of Qc

are Qc/J = 1.61 for case (i) and Qc/J = 2.00 for case (ii). The
inset shows the scaling of Qc.

� given by equations (10) and (12) for cases (i) and (ii),
respectively. Although � is an integral quantity, it is sufficient
for the purpose of discriminating between plaquettized and
dimerized ground states. Namely, a plaquette phase preserves
the four-fold lattice rotational symmetry, implying

Re� = Im�, (13)

while in a dimerized state this equality does not hold. In
figure 7 we show Re� and Im� . The equality (13) is satisfied
throughout the phase diagram. This fact is not surprising in
the antiferromagnetic phase, but in the paramagnetic region it
presents strong evidence against any type of dimerized ground
states. Although such states were allowed in the process
of minimization, the C4-symmetric states always had lower
energy. In fact, the ground state in the non-magnetic region is
a plaquette paramagnet, with each plaquette being in its singlet

5



J. Phys.: Condens. Matter 22 (2010) 016006 L Isaev et al

Figure 7. The ‘order parameter’ � for the two cases, studied in this
paper. Notice the coincidence of curves for Re� and Im�. For
Q � Qc this implies the plaquette nature of the quantum
paramagnetic state.

ground state. However, due to the tensor nature of interactions
in (1) these plaquettes are interacting.

As already mentioned in section 1, the coarse graining
procedure explicitly breaks the lattice translation invariance,
which should be restored in the thermodynamic limit.
Extrapolation to Nq → ∞ shows that Re�, Im� → −0.04,
suggesting that the translational invariance is indeed being
recovered.

4. Discussion

Our calculations, presented in the previous section, demon-
strate that the Hamiltonian (1) exhibits a phase transition point
separating the Néel ordered state from a paramagnetic phase
with broken translational invariance, in agreement with conclu-
sions of previous works [4–6]. Most importantly, besides es-
tablishing the existence of a phase transition, we were also able
to unveil the nature of the paramagnetic phase and show that
a correlated plaquette state is favored over a columnar dimer
state which, although not conclusively, seems to be preferred
according to previous calculations [4].

However, despite qualitative agreement, there is a
quantitative discrepancy in the numerical value of Qc. Namely,
the value obtained in the present paper is much smaller than the
one presented in [4]. Although we cannot provide a rigorous
explanation for this discrepancy, we would like to make some
qualitative remarks in the following.

First of all, it is clear that the variational wavefunction (3),
being a low-density ansatz, generally leads to an under-
estimation of the four-boson scattering terms in equation (2).
In order to understand how significant this error is and check
that the results, presented in figures 4–6, are reasonable, we
used data from the exact diagonalization of 4 × 4 spin clusters
to compare magnitudes of the two terms: the ones, proportional
to J and Q, in equation (1). On physical grounds one
would expect a phase transition to occur when these terms
become comparable. Figure 8 presents the two contributions

Figure 8. Contributions to the GSE from the J and Q terms in (1)
for a 4 × 4 spin cluster with periodic boundary conditions. The
unimportant term −N Q/8 is omitted.

and their dependence on Q/J . Of course, the crossing point
at Q/J ∼ 1 does not determine the critical value Qc, but
it provides a clue on where the phase transition may occur.
Since the system is gapped in the paramagnetic phase, one
can argue that the size 4 × 4 is large enough to describe the
thermodynamic limit. Indeed, QMC data for Q/J = 10
indicates that the GSE converges very rapidly with increasing
system size [13]. Also, calculations analogous to that shown
in figure 8, performed [13] for systems up to 16 × 16 sites,
indicate that the magnitude of the crossing point stays of order
unity.

Second, we would like to emphasize that, although there
is no question about the correctness of the QMC studies
of [4–6, 14], the procedure used to extract physical quantities,
like Qc, from the raw statistical data, is not straightforward and
requires certain assumptions [4]. Therefore, it is desirable to
have another independent determination of the phase transition
point, for example, from the data on staggered magnetization,
computed in the entire Q range. While such calculations would
definitely help to resolve this issue, surprisingly, they have
never been performed. QMC computations of finite lattices
does not suffer from the infamous sign problem in this case,
thus it yields better energy and magnetization values than the
ones obtained here. Our approach, on the other hand, focuses
on establishing symmetry properties of different phases, rather
than improving numerical values for observable quantities. It
is this fact, which enables us to detect phase transition points
within a simple framework.

Our conclusions raise another important question regard-
ing the nature of the phase transition. We find it to be of
Landau type. Although the finite-size scaling of the second-
order derivative of the GSE, presented in the previous section,
displays a finite jump as Nq → ∞, there is no way to rig-
orously prove it. Thus, the possibility of a weakly first-order
transition at Qc cannot be completely excluded. Indeed, in [14]
it was argued that this phase transition, which was claimed to
occur at the same point as in [4], is of the first order. As any

6
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real-space method our approach explicitly breaks translational
invariance, and although the finite-size scaling for � implies
that this property is restored with increasing cluster size, we
cannot provide a rigorous symmetry-based analysis.

In summary, we determined the phase diagram of the
J–Q model (1), by using the recently proposed hierarchical
mean-field approach [7, 8]. It was shown that there exists
a single (i.e. universal) mean-field framework (variational
ansatz for the ground state), which gives the complete phase
diagram of the model. In particular, we found that there
exists a critical point at Qc ≈ 2.13J , which separates the
antiferromagnetic phase from the non-magnetic state. The
latter breaks lattice translational invariance and was shown
to represent a correlated plaquette paramagnetic phase. Our
results suggest that the phase transition at Qc is of a Landau
second-order type, even in the thermodynamic limit Nq → ∞,
although we cannot rigorously exclude the possibility for it to
become weakly first order.
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